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Due to their essential functions, dysregulation of nuclear pore complexes

(NPCs) is strongly associated with numerous human diseases, including neu-

rodegeneration and cancer. On a cellular level, longevity of scaffold nucleo-

porins in postmitotic cells of both C. elegans and mammals renders them

vulnerable to age-related damage, which is associated with an increase in pore

leakiness and accumulation of intranuclear aggregates in rat brain cells.

Thus, understanding the mechanisms which underpin the homeostasis of this

complex, as well as other nuclear proteins, is essential. In this review,

autophagy-mediated degradation pathways governing nuclear components in

yeast will be discussed, with a particular focus on NPCs. Furthermore, the

various nuclear degradation mechanisms identified thus far in diverse eukary-

otes will also be highlighted.
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Autophagy describes a regulated process by which cellu-

lar material is imported into a degradative compartment,

such as the vacuole or lysosome, for destruction. Three

main types of autophagic processes have been described

and extensively reviewed in detail elsewhere: microauto-

phagy, chaperone-mediated autophagy (CMA), and

macroautophagy [1–3]. In microautophagy or CMA,

cargo is delivered directly to a degradative compartment,

accomplished either through invaginations or protru-

sions of the lysosomal or vacuolar membrane or by

translocation through a protein-mediated channel,

respectively. In contrast, macroautophagy describes the

process of cargo sequestration into a de novo synthesized

double-membrane vesicle, called the autophagosome,

which subsequently fuses with the lysosome/vacuole

[4,5]. During autophagosome biogenesis, transfer of

lipids from various intracellular membrane sources

facilitates the expansion of an initial flat membrane disk

to form a closed autophagosome via a cup-shaped inter-

mediate, termed the phagophore or isolation membrane

[6]. Importantly, macroautophagy and the protein

machinery required for autophagosome formation are

highly conserved from yeast, where it was originally

characterized, to higher eukaryotes such as plants and

mammals [7]. Interestingly, many of the core autophagy

machinery proteins required for macroautophagy also

play essential roles in microautophagy [3]. Together,

autophagic processes ensure the specific targeting and

removal of a wide range of damaged or unwanted cellu-

lar components, such as organelles, protein aggregates,

and intracellular pathogens, thereby maintaining cellular

integrity and homeostasis.

The nucleus is the defining feature of eukaryotic cells

and is the primary location for organization and
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expression of the genome (Fig. 1A). In addition to

DNA and several classes of RNAs, the nucleus houses

a distinct proteome of architectural proteins and gene

expression machinery. Many nuclear proteins are

further organized into specialized subdomains, such as

the nucleolus, enabling the compartmentalization of

nuclear functions [8]. Nuclear content is separated from

the surrounding cytoplasm by the nuclear envelope,

which is continuous with the endoplasmic reticulum

(ER), and consists of an outer nuclear membrane

(ONM) and an inner nuclear membrane (INM). These

membranes are connected via linker of nucleus and

cytoskeleton (LINC) complexes, consisting of trans-

membrane proteins of the INM and ONM joined via

intermolecular disulfide bonds in the nuclear envelope

lumen [9]. In metazoans, nuclear envelope integrity is

further maintained by the nuclear lamina, a protein net-

work underlying the INM [10]. Regulated transport of

proteins and RNA across the nuclear envelope is pri-

marily facilitated by multimegadalton NPCs which

span the two membranes and are highly conserved

among eukaryotes [11–13].
NPCs (Fig. 1B) are made up of multiple copies of

approximately 30 different proteins, termed nucleopor-

ins, totaling more than 550 proteins in S. cerevisiae and

over 1000 proteins in humans [14–16]. A symmetric scaf-

fold of inner and outer rings with eightfold rotational

symmetry anchors the NPC in the nuclear membrane

at points of fusion between the INM and ONM.

Recent studies utilizing integrative structural biology

approaches have revealed the high-resolution structure

of the NPC scaffold in yeast, Xenopus laevis and humans

[14–22]. Nucleoporins with intrinsically disordered

regions enriched for repeated amino acid sequences con-

taining phenylalanine and glycine residues (FG repeats)

are anchored to this scaffold and form a meshwork that

constitutes the permeability barrier of the NPC

[14,16,23]. Within cells, the directionality of mRNA

export is governed by the asymmetric assembly of

cytoplasmic filaments and the nuclear basket on the

cytoplasmic and nuclear sides of the NPC, respectively

[11]. Recent studies have revealed heterogeneity among

NPCs found within a single cell, with NPCs located at

the nucleolus lacking a nuclear basket [14,24]. Further-

more, the NPC scaffold is dynamic, with significant

changes in pore diameter observed in multiple organisms

under different conditions [20,25,26]. The functional sig-

nificance of these variations in NPC architecture remains

largely unclear.

The proper maintenance and regulation of nuclear

components, in particular the NPC, are of utmost

importance for the maintenance of nuclear functions,

dynamics, and overall cellular viability [27–30]. While

NPC dysregulation, for example, is linked to human

diseases including neurodegeneration and cancer, the

degradation of nuclear components and their physio-

logical significance have received less attention com-

pared with other organelles such as the ER and

mitochondria. In recent years, it has been shown that

several autophagic pathways, collectively referred to as

nucleophagy, are involved in maintaining nuclear

homeostasis. Here, we first review autophagy-mediated

degradation of nuclear components in the budding

yeast S. cerevisiae, which is the best-studied case due

to its closed mitosis, and has several autophagy path-

ways that selectively target and degrade different parts

of the nucleus. We later expand to nuclear degradation

mechanisms identified in other eukaryotes.

Selective autophagy of nuclear
components in S. cerevisiae

Selective macroautophagy involves the recognition and

sequestration of specific cargo by specialized receptor

proteins that selectively recognize the cargo and pos-

sess a binding motif for ubiquitin-like proteins of the

Atg8/LC3/GABARAP family that are covalently

anchored to the lipid phosphatidylethanolamine. This

Fig. 1. Organization of the nuclear envelope and NPC structure. (A) Key structural features of the nuclear envelope conserved between

eukaryotes. The nuclear lamina is found only in metazoans. (B) Schematic displaying major structural features of the NPC in yeast.
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connects the cargo with the growing phagophore. The

most commonly found motif, called the Atg8 interact-

ing motif (AIM) or LC3-interacting region (LIR), is

often located in intrinsically disordered regions (IDRs)

of receptor proteins [31]. In addition, most selective

autophagy receptors recruit the autophagy scaffold

protein Atg11, which binds to phosphorylated sites on

the autophagy receptor protein and synchronizes cargo

recognition with phagophore biogenesis [32–34].
One of the first nucleophagy receptors identified in

budding yeast was Atg39 [35]. Atg39 is a transmem-

brane protein with a single transmembrane domain

inserted into the ONM [36,37]. Amphipathic helices in

its C-terminal domain bind to the INM, linking the

two membranes [36,37]. Binding sites for both Atg8

and Atg11 are located in the cytoplasm-facing N-

terminal region. A local increase in Atg39 leads to

nuclear envelope expansion and remodeling, resulting

in the formation of double-membrane nuclear-derived

vesicles (NDVs), the mechanisms of which are not yet

fully understood (Fig. 2A). However, based on elec-

tron tomography data, the current model suggests an

initial scission step of the INM, forming a vesicle

intermediate within the perinuclear space, followed by

a second scission step that releases the NDV into the

cytoplasm [36]. Membrane remodeling during this pro-

cess is likely driven by the amphipathic helices of

Atg39, as truncation mutants of these domains result

in a loss of degradation of Tal1 and Heh1, identified

cargoes of Atg39-dependent nucleophagy [36,37]. The

concept of membrane remodeling by autophagy recep-

tors is also found in the case of other organelles such

as the ER, where local clustering of reticulon homol-

ogy domain-containing proteins in the ER membrane

initiates ER remodeling [38–40]. In Atg39-dependent

nucleophagy, NDV formation is coordinated with

autophagosome biogenesis, resulting in autophagic

engulfment and subsequent delivery of NDVs to the

vacuole. How NDV formation and autophagosome

biogenesis are orchestrated is still elusive.

Another possible route for NDVs to enter the vacuole

is direct uptake by microautophagy at the nucleus–vac-
uole junction, specifically referred to as micronucleo-

phagy or piecemeal microautophagy of the nucleus

(Fig. 2C) [41–43]. Interestingly, micronucleophagy also

appears in some cases to require Atg39 and the core

autophagy machinery since the deletion of these pro-

teins blocks autophagic degradation of nucleus–vacuole
junction proteins such as Osh1 and Nvj1 [43]. However,

this depends on the cargo monitored since not every

cargo is strictly dependent on these proteins [44]. It is

unclear what role the core autophagy machinery pro-

teins play in micronucleophagy [38–40]. One striking

difference between these two nucleophagy pathways is

the size of the formed NDVs, with those degraded by

micronucleophagy being approximately twice as large

as those sequestered during macroautophagy [43]. Since

the mechanisms of NDV formation in both pathways

are poorly characterized, the cause of this difference in

cargo morphology is unknown.

Remarkably, nucleophagy also constitutes an alterna-

tive route for nuclear-cytoplasmic transport, enabling

the movement of nuclear material across the nuclear

envelope. Micronucleophagy preferentially targets

Fig. 2. Nucleophagy mechanisms in S. cerevisiae. (A) The first identified nucleophagy receptor in yeast, Atg39 interacts with Atg8 in order

to initiate phagophore formation at the nuclear envelope. Additionally, the interactions of Atg39 with both the INM and ONM allow the

deformation of the nuclear envelope to form double-membrane-bound NDVs. As yet, cargo specificity for nucleophagy mediated by Atg39,

aside from the proteins Heh1 and Tal1, is unclear. (B) A specialized form of nucleophagy for the degradation of NPCs is facilitated by an

interaction between the intrinsic autophagy receptor Nup159 and Atg8. Clustering of NPCs at the site of phagophore formation leads to an

enrichment of NPCs within the resulting NDVs. (C) Micronucleophagy is distinct from macronucleophagy as it does not involve the formation

of a phagophore at the nuclear envelope, but rather budding of the nuclear envelope directly into a degradative compartment, namely the

vacuole in yeast. This direct engulfment of the nucleus occurs at nucleus–vacuole junctions and requires the interaction between Vac8 and

Nvj1. Atg39 has been implicated in this mechanism but its role remains unclear.
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nucleolar components including pre-ribosomes [45,46].

In addition, a nuclear-targeted temperature-sensitive

variant of firefly luciferase that misfolds at 37 °C is

degraded by micronucleophagy, suggesting a quality

control function in removal of nuclear protein aggre-

gates [47]. In line with this, the nucleolus has been pro-

posed as a storage compartment for misfolded proteins

which are kept in a folding-competent state by the chap-

erone Hsp70 [48]. Interestingly, micronucleophagy is

highly selective, excluding chromosomal DNA, ribo-

somal DNA (rDNA), and NPCs from degradation via

this process [45,46,49,50]. While the mechanism behind

this cargo selectivity remains unknown, it has been

speculated that, for example, NPCs are too large to

enter the nucleus–vacuole junction.
Recently, a third nucleophagy pathway has been

uncovered that specifically targets NPCs for degrada-

tion and has been named NPC-phagy [51,52]. As

shown by electron tomography, NDVs containing

NPCs are formed, released, and subsequently seques-

tered in autophagosomes during NPC-phagy (Fig. 2B)

[20,51,52]. Experiments testing the dependence of

nucleoporin degradation on Atg11 or the AIM-binding

pocket of Atg8 suggested a receptor-mediated degrada-

tion pathway, which was only slightly impaired by

deletion of ATG39 [51,52]. Pulldown experiments using

Fig. 3. Selected identified nucleophagy mechanisms in higher eukaryotes. (A) A specialized form of micronucleophagy identified in MEFs

degrades the ONM during recovery from ER stress. (B) Lamin B1 is an intranuclear interactor of LC3B-II in human primary IMR90 cells.

Upon oncogenic stress, decreased nuclear envelope integrity enables chromatin and lamin B1 bound by LC3B-II to escape the nucleus and

form CCFs. The mechanism of CCF delivery to lysosomes for degradation remains unclear. (C) Upon cell cycle disruption or DNA damage in

specific cell types, micronuclei containing damaged chromatin are released into the cytoplasm. Recognition of micronuclei by cytosolic cGAS

upregulates interferon gene expression via the cGAS/STING signaling pathway. Furthermore, cGAS has been proposed as an autophagy

receptor, which may target micronuclei for lysosomal delivery via an uncharacterized mechanism.
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Atg8 as bait revealed direct binding of NPC compo-

nents via the cytosolic filament protein Nup159. An

AIM in an IDR toward the C-terminal half of

Nup159 was identified as essential for Atg8 recruit-

ment [51,52]. We showed that mutation in the AIM

not only abolished Atg8 binding but also impaired

nucleoporin degradation, thus acting as an intrinsic

receptor [51]. Moreover, deletion of Nup116, which

fails to assemble Nup159 and the cytosolic filament

complex at a restrictive growth temperature, also abol-

ished nucleoporin degradation upon induction of

autophagy by nitrogen starvation [20]. Interestingly,

knockout of the ER-phagy receptor Atg40 showed

reduced NPC-phagy, suggesting a potential role for it

in the NPC degradation pathway [51,52]. Similarly, the

mammalian ER-phagy receptor TEX264 has been

described to have a dual role in ER and nuclear qual-

ity control [53]. However, Tomioka et al. reported a

contrasting finding regarding the dependence of

nucleoporin degradation on the AIM of Nup159.

According to their results, the AIM appears to facili-

tate the elimination of unassembled Nup159, a process

referred to as nucleoporinophagy, rather than the deg-

radation of whole NPCs. One possible explanation for

the different observations is that additional physical

interactions play an important role in the efficient

turnover of NPCs. Nup159 could potentially possess

other auxiliary AIMs, similar to known autophagy

receptors, that greatly enhance the affinity of receptor-

Atg8 interactions [54,55]. In addition, concurrent inter-

actions with other nucleoporins may drive NPC-phagy.

Of note, there was also a difference in the conditions

used for induction of autophagy between the two stud-

ies, which may also contribute to the observed discrep-

ancies. Further investigations are necessary to address

this issue and to gain a comprehensive understanding

of the mechanism and physiological significance of

NPC-phagy.

The receptor Nup159 contains an N-terminal beta-

propeller domain tethering the helicase Dbp5 to the

NPC, followed by FG repeats, a pentameric Dyn2-

binding domain, and a C-terminal coiled-coil domain.

The binding of Dyn2 dimers to Nup159 promotes a

stable association of the cytosolic filament complex

with the NPC [56,57]. Interestingly, the Nup159 AIM

is located adjacent to the Dyn2-binding site and faces

toward the cytosolic side of the NPC [51]. It has been

shown that binding of Atg8 to Nup159 induces a con-

formational change in the IDR [58]. Whether Dyn2

influences the Nup159-Atg8 interaction is unknown;

however, it is tempting to speculate that Nup159-Dyn2

oligomerization could provide an avidity-driven sur-

face between the Atg8-mediated phagophore

membrane and the NPC-containing NDV by recruit-

ment of additional Nup159 proteins. Interestingly, we

showed that NPC-phagy is increased in a Nup159-

dependent manner by deletion of the y-complex (outer

ring) nucleoporins Nup120 and Nup133, which display

a constitutive NPC clustering phenotype [59–61]. These
results suggest a quality control function of

NPC-phagy for NPC assembly or functionality. Future

studies will have to address the specificity, selectivity,

interplay, and physiology of the individual nucleo-

phagy pathways.

Degradation of nuclear components
by autophagy in other eukaryotes

While no homolog for Atg39 has been identified as a

nucleophagy receptor in higher eukaryotes, the translo-

con subunit SEC62 has recently been shown to act as a

selective autophagy receptor for the degradation of

excess ONM portions during recovery from ER stress

in mouse embryonic fibroblasts (MEFs; Fig. 3A). In

contrast to macronucleophagy in yeast, where NDVs

surrounded by both the INM and ONM are engulfed

into autophagosomes, this pathway requires TMX4-

catalyzed LINC complex intermolecular disulfide bond

reduction to enable ONM-only vesicle formation.

Time-course microscopy revealed that these ONM vesi-

cles are engulfed directly into endolysosomes for degra-

dation. This mechanism is thus an example of

micronucleophagy in higher eukaryotes [62]. In addition

to this SEC62-mediated mechanism, Microtubule-

Associated Protein 1 Light Chain 3 Beta (MAP1LC3B/

LC3B) has intranuclear binding partners in higher

eukaryotes, some of which have been proposed as

autophagy receptors [63]. Among these interactors are

lamin B1 and lamin A/C, components of the nuclear

lamina [10]. In human primary IMR90 cells, lipidated

LC3B (LC3B-II) binds lamin B1 and lamin-associated

domains of chromatin. Upon oncogenic stress, these

interactions, accompanied by elevated expression of

autophagy factors, promote lysosomal delivery and

degradation of cytoplasmic chromatin fragments

(CCFs) containing lamin B1 and chromatin, which bleb

from the nuclear envelope (Fig. 3B) [64]. Autophagy of

CCFs containing lamin B1 also occurs in senescent

human melanocytes [65]. In mice and Caenorhabditis

elegans, autophagic degradation of lamin B1 is regu-

lated by nesprin-2, which mediates autophagy of other

nuclear components, including the nucleolus, to pro-

mote germline immortality and prolong somatic cell

lifespan [66]. In human breast cancer cells with

doxorubicin-induced DNA damage, UBC9-mediated

SUMOylation of lamin A/C promotes interaction with
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LC3B-II, causing degradation of lamin A/C and leaked

chromatin [67].

In addition to nuclear lamina components, the

NAD+-dependent deacetylase SIRT1 is another selec-

tive nuclear substrate of autophagy identified in several

murine tissues and aged human CD8+ CD28� T cells.

During senescence, decreased SIRT1 phosphorylation

likely mediates its increased LIR-dependent interaction

with LC3B [68]. Intranuclear Atg8-binding partners

are also reported in plants. Cellular levels of the tran-

scription factor Heading date 1 (Hd1) in Oryza sativa

are mediated by an intranuclear AIM-dependent inter-

action with Atg8. AIM mutation increases cellular

Hd1 level, contributing to delayed flowering, specifi-

cally under dark conditions [69]. Furthermore, immune

response-associated degradation of C1 protein from

tomato leaf curl Yunnan virus residing in the nucleus

of Nicotiana benthamiana and Solanum lycopersicum is

dependent on C1 interaction with Atg8. In this case,

the Atg8-cargo interaction both targets the C1 protein

for degradation via autophagy and enables C1 export

from the nucleus via the Xpo1 export pathway, pre-

sumably to access the cytoplasmic autophagy machin-

ery [70].

In the absence of a directly detected interaction

between Atg8/LC3/GABARAP family members and a

nuclear binding partner, autophagy of nucleus-derived

material has still been observed. During open mitosis,

micronuclei containing chromatin surrounded by aber-

rant nuclear envelope form when chromosomal frag-

ments fail to be incorporated into daughter cell nuclei

[71]. In U2OS cells, chemical cell cycle perturbation

increases the frequency of micronuclei, some of which

colocalize with LC3B, the lysosome marker LAMP2

and the autophagy receptor p62/SQSTM1, which binds

ubiquitinated proteins [72]. Chromatin in these micro-

nuclei is positively stained for the DNA damage

marker cH2AX and perturbation of autophagy

machinery reduces genomic stability in these cells, sug-

gesting autophagy of micronuclei contributes to

genome maintenance and protection against DNA

damage [73]. Micronucleus-like structures containing

damaged chromatin and lamins also form in a MEF

cell model for Aicardi–Gouti�eres syndrome (AGS), in

which deletion of the ribonuclease RNaseH2 increases

aberrant incorporation of ribonucleotides into DNA.

In this model, autophagy inhibition increases the abun-

dance of micronuclei, which colocalize with LC3B. This

increase in micronuclei correlates with upregulated

cGAS/STING-mediated expression of interferon-

stimulated genes, which is a typical autoimmune

response in AGS [74,75]. cGAS interacts with LC3B

via a LIR and is a potential selective autophagy

receptor for these micronuclei (Fig. 3C) [76]. A link

between lysosomal delivery of nuclear content and

autoimmunity is also observed in MEFs, where dele-

tion of ATG5 leads to an increase in extranuclear DNA

which is not delivered to lysosomes, and a resulting

STING-dependent autoimmune response [77]. Autop-

hagy may therefore reduce the occurrence of autoim-

mune responses against cytoplasmic accumulations of

nuclear components. In addition to the degradation of

micronuclei containing both chromatin and lamins,

autophagy is implicated in clearance of extranuclear

chromatin apparently unassociated with nuclear lam-

ina. In lamin A mutant (LmnaH222P/H222P) MEFs with

compromised nuclear envelope integrity, extranuclear

damaged chromatin accumulates and colocalizes with

autophagosome biogenesis factors and LAMP2, a lyso-

somal membrane protein, implicating autophagy in its

removal [78]. Furthermore, upon arginine starvation of

prostate cancer cells harboring a mutation in arginino-

succinate synthetase (ASS1), reactive oxygen species

accumulate due to mitochondrial dysfunction, leading

to DNA damage. Damaged DNA is extruded through

the nuclear envelope, which is remodeled under these

conditions, and is similarly targeted by the autophagy

machinery for degradation [79].

In extreme cases, autophagy degrades entire nuclei,

such as during the formation of the appressorium, a

structure required for virulence, in the rice blast fungus

Magnaporthe oryzae. The absence of nucleus–vacuole
junctions in M. oryzae, in addition to a requirement for

Atg1 and Atg4, implicates macroautophagy in this pro-

cess [80]. Additional mechanisms for macroautophagy-

mediated degradation of entire nuclei have been

described in basal cells of hyphae for hyphal growth in

the filamentous fungus Aspergillus oryzae, and during

hyphal fusion in pathogenic Fusarium oxysporum

[81,82]. A better-characterized mechanism for entire

nuclear autophagic degradation occurs during sexual

reproduction in Tetrahymena thermophila. Following

chromatin condensation in the somatic macronucleus of

parental cells, changes in protein and lipid composition

of the ONM are associated with Atg5 and Atg8 recruit-

ment, promoting lysosome localization to the nuclear

periphery and acidification of the nuclear interior,

resulting in total nuclear degradation [83–86]. The

nature of the autophagosomal structures involved is

unclear. Additional membrane sheets are not observed

at the nuclear periphery, suggesting that canonical

autophagosome formation and autophagosomal engulf-

ment of nuclear portions does not occur, despite the

involvement of a Vps34 homolog [83,87]. Autophagy of

entire nuclei also occurs in higher eukaryotes. In

C. elegans, the number and size of intestinal nuclei
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decrease over time. Electron micrographs of remaining

nuclei show additional perinuclear membranous struc-

tures, speculated to be autophagy intermediates [88]. In

terminal differentiation of mammalian keratinocytes,

organelles including the nucleus are lost during autop-

hagic cell death. Nuclear degradation is attributed to

autophagy due to LC3B recruitment to the nuclear

envelope, an increase in autophagy factor expression at

late stages of differentiation and colocalization of extra-

nuclear DAPI-stained puncta with LC3B in differentiat-

ing epidermis of Atg7�/� transgenic mice [89,90].

Phosphorylation of lamin A/C by AKT1 is required for

effective nuclear degradation, presumably facilitating

nuclear blebbing due to reduced nuclear envelope integ-

rity [91]. Retention of nuclear material in differentiated

keratinocytes is linked to lesion formation in psoriasis

and decreased expression of autophagy factors in psori-

atic lesions suggests a possible link between nuclear

autophagy defects and disease manifestation [89–91]. It
should be noted that a noncanonical autophagy-like

mechanism is also responsible for the degradation of

entire uncellularized nuclei during yeast gametogenesis.

In this case, rather than delivery of portions of the

nucleus to degradative compartments, nuclear destruc-

tion is facilitated by vacuole permeabilization and

release of degradative enzymes into the cytoplasm of the

mother cell during sporulation [92].

Concluding remarks

Highlighted nucleophagy mechanisms across eukary-

otes demonstrate diversity in their physiological causes,

consequences, and disease associations. However,

mechanistic details for these processes are severely lack-

ing, even presenting challenges when defining them as

micro- or macroautophagic. The example of complete

nuclear degradation in T. thermophila also suggests the

existence of nucleophagy mechanisms distinct from

these two forms of autophagy. Further mechanistic

investigation of the formation of nuclear autophagic

cargo, such as NDVs, micronuclei and CCFs, and their

interactions with autophagic structures, as well as sys-

tematic identification of receptors involved in nuclear

autophagy will be essential to increase our understand-

ing of the nuclear autophagy landscape across eukary-

otic species. Also, to date no NPC-phagy pathway in

higher eukaryotes has been described. In analogy to

yeast, it will be important to investigate this in postmi-

totic cells such as neurons, which could potentially rely

on such mechanisms for nuclear quality control. More-

over, by now it is clear that many membrane remodel-

ing events occur at the nuclear envelope across different

organisms, which leads to the formation of NDVs [93].

This allows various different cargoes such as viruses,

RNA granules, and proteins to escape the nucleus and

be delivered to the cytosol. It is expected that many of

these pathways are potentially linked to autophagy for

quality control purposes, as such nuclear egress coupled

to autophagy provides an elegant solution for waste

removal from a highly regulated intracellular organelle.
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